Hellinger Distance Weighted Ensemble for imbalanced data stream classification
نویسندگان
چکیده
The imbalanced data classification remains a vital problem. key is to find such methods that classify both the minority and majority class correctly. paper presents classifier ensemble for classifying binary, non-stationary streams where Hellinger Distance used prune ensemble. includes an experimental evaluation of method based on conducted experiments. first one checks impact base type quality classification. In second experiment, Weighted Ensemble (HDWE) compared selected state-of-the-art using statistical test with two classifiers. was profoundly tested many obtained results proved HDWE method's usefulness.
منابع مشابه
Classifier Ensemble for Uncertain Data Stream Classification
Currently available algorithms for data stream classification are all designed to handle precise data, while data with uncertainty or imperfection is quite natural and widely seen in real-life applications. Uncertainty can arise in attribute values as well as in class values. In this paper, we focus on the classification of streaming data that has different degrees of uncertainty within class v...
متن کاملOn Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملOn Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملEnsemble Approach for the Classification of Imbalanced Data
Ensembles are often capable of greater prediction accuracy than any of their individual members. As a consequence of the diversity between individual base-learners, an ensemble will not suffer from overfitting. On the other hand, in many cases we are dealing with imbalanced data and a classifier which was built using all data has tendency to ignore minority class. As a solution to the problem, ...
متن کاملHellinger distance
In this lecture, we will introduce a new notion of distance between probability distributions called Hellinger distance. Using some of the nice properties of this distance, we will generalize the fooling set argument for deterministic protocols to the randomized setting. We will then use this to prove a Ω(n) lower bound for the communication complexity of Disjointness. We will also see how this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Science
سال: 2021
ISSN: ['1877-7511', '1877-7503']
DOI: https://doi.org/10.1016/j.jocs.2021.101314